

CS103CS103
Fall 2025Fall 2025

Lecture 15:
Finite Automata
Part 2 of 3

Outline for Today
● Recap from Last Time

● Where are we, again?
● Regular Languages

● A fundamental class of languages.
● NFAs

● Automata with Magic Superpowers.
● Designing NFAs

● Harnessing an awesome power.

Recap from Last Time

Suppose you know the following:

x ∈ Σ y ∈ Σ*

Which of the following options is correct?

(A) x is a character and y is a character.
(B) x is a character and y is a string.
(C) x is a string and y is a character.
(D) x is a string and y is a string.
(E) None of these

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Formal Language Theory
● An alphabet is a set, usually denoted Σ,

consisting of elements called characters.
● a ∈ Σ means “a is a single character.”

● A string over Σ is a finite sequence of zero or
more characters taken from Σ.

● The empty string has no characters and is
denoted ε.

● A language over Σ is a set of strings over Σ.
● The language Σ* is the set of all strings over Σ.

● w ∈ Σ* means “w is a string of characters from Σ.”

The Language of an Automaton
● If A is an automaton that processes

strings over Σ, the language of A,
denoted (ℒ A), is the set of all strings A
accepts.

● Formally:
ℒ(A) = { w ∈ Σ* | A accepts w }

DFAs
● A DFA is a

● Deterministic
● Finite
● Automaton

● A DFA is defined relative to some alphabet Σ.
● For each state in the DFA, there must be exactly

one transition defined for each symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

Recognizing Languages with DFAs
L = { w ∈ {a, b}* | w contains aa as a substring }

Recognizing Languages with DFAs
L = { w ∈ {a, b}* | w contains aa as a substring }

q0
start q1 q2

a

a

b

b

 a, b

Recognizing Languages with DFAs
L = { w ∈ {a, b}* | w contains aa as a substring }

q0
start q1 q2

a

a

b

b

 a, b

Recognizing Languages with DFAs
L = { w ∈ {a, b}* | w contains aa as a substring }

q0
start q1 q2

a

a

b

b

 Σ

Recognizing Languages with DFAs
L = { w ∈ {a, b}* | w contains aa as a substring }

q0
start q1 q2

a

a

b

b

 Σ

New Stuff!

Tabular DFAs

Tabular DFAs

start q0q0

1

q1 q2 q3
0 1 0

0

 Σ

q0

q1

q2

q3

0 1

1

q3

Tabular DFAs

start q0q0

1

q1 q2 q3
0 1 0

0

 Σ

q0

q1

q2

q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

q3

Tabular DFAs

start q0q0

1

q1 q2 q3
0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

q3

Tabular DFAs

start q0q0

1

q1 q2 q3
0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

These stars
indicate accepting

states.

q3

Tabular DFAs

start q0q0

1

q1 q2 q3
0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

Since this is the
first row, it's the

start state.

q3

Tabular DFAs

start q0q0

1

q1 q2 q3
0 1 0

0

 Σ

*q0

q1

q2

*q3

0 1
q0q1

q2q3

q3 q3

q0q3

1

Why isn’t there a column
here for Σ?

Answer at
https://cs103.stanford.edu/pollev

q3

https://cs103.stanford.edu/pollev

Simulating a DFA
int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, …},
 …
};

bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 …
};

bool accepts(string input) {
 int state = 0;
 for (char ch: input) {
 state = kTransitionTable[state][ch];
 }
 return kAcceptTable[state];
}

The Regular Languages

A language L is a regular language when
there exists a DFA D such that (ℒ D) = L.

If L is a language and (ℒ D) = L, we say
that D recognizes the language L.

Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }

q0
start q1 q2

a a

b

b

 Σ

L = { w ∈ {a, b}* | w does not contain aa as a substring }

How do we turn the DFA above
into a DFA for L?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Complementing Regular Languages

L = { w ∈ {a, b}* | w contains aa as a substring }

q0
start q1 q2

a a

b

b

 Σ

L = { w ∈ {a, b}* | w does not contain aa as a substring }

q0
start q1 q2

a a

b

b

 Σ

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1
start q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
 comment }

q1
start q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Complementing Regular Languages

L = { w ∈ {a, *, /}* | w doesn't represent a C-style
 comment }

q1
start q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

q5

q3q2q1q0

The Complement of a Language
● Given a language L ⊆ Σ*, the complement

of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:
L = Σ* - L

The Complement of a Language
● Given a language L ⊆ Σ*, the complement

of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:
L = Σ* - L

Σ*

The Complement of a Language
● Given a language L ⊆ Σ*, the complement

of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:
L = Σ* - L

Σ*

L

The Complement of a Language
● Given a language L ⊆ Σ*, the complement

of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:
L = Σ* - L

L L

Σ*

The Complement of a Language
● Given a language L ⊆ Σ*, the complement

of that language (denoted L) is the
language of all strings in Σ* that aren't in L.

● Formally:
L = Σ* - L

L L

Σ*

Good proofwriting
exercise: prove L̿ = L
for any language L.

Closure Properties
● Theorem: If L is a regular language, then L is also a

regular language.
● (“The regular languages are closed under complementation.”)

● Proof idea: Show that swapping the accepting and
rejecting states of a DFA for L gives a DFA for L.

All languages

Regular languages

L

L

Question to ponder:
are the nonregular

languages closed under
complementation?

Time-Out for Announcements!

Midterm Exam Graded
● Want to talk to us about the exam and next steps?

● Stop by our office hours!
● Chat with us after class!
● Schedule a 1-on-1 with Kaia!

● Regrade requests for the exam are open and close Monday at
6:00PM.

 ☞ Read the instructions before submitting regrade requests. ☜
● Regrade requests are intended as a way to correct grading errors.

We’re happy to correct mistakes we’ve made.
● If you’re looking to talk to someone about the exam, or discuss plans

for the tail end of the quarter, or just get a pep talk, that’s best
handled outside the regrade request system.

● To make sure regrade requests are used as intended, we’re strict
about their structure / formatting.

Back to CS103!

Beyond DFAs

The Motivation

q0 q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1
Question: How do we

interpret an automaton like
this one?

NFAs
● An NFA is a

● Nondeterministic
● Finite
● Automaton

● NFAs are structurally similar to a DFA,
but represents a fundamental shift in
how we'll think about com

(Non)determinism
● A model of computation is deterministic if at every point in the

computation, there is exactly one choice that can make.
● The machine accepts if that series of choices leads to an accepting

state.
● A model of computation is nondeterministic if the computing

machine has a finite number of choices available to make at each
point, possibly including zero.

● The machine accepts if any series of choices leads to an
accepting state.
● (This sort of nondeterminism is technically called existential

nondeterminism, the most philosophical-sounding term we’ll introduce
all quarter.)

● This idea was introduced by Michael Rabin and Data Scott as an
internship project (!) at IBM in 1957. It won them the Turing
Award (the “Nobel Prize of Computer Science”) in 1976.

A Simple NFA

q0 q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

A Simple NFA

q0 q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1
q0 has two transitions

defined on 1!

A Simple NFA

q0 q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1

1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q3

q2q2q2q2q1q1q0q0

q3

A Simple NFA

start 1

1

 0, 1
0 0, 1

 0, 1

0 1 0 1 1

q3

q2q2q2q2q1q1q0q0

q3

A Simple NFA

start 1

1

 0, 1
0

 0, 1

 0, 1

0 1 0 1 1

q3

q2q2q2q2q1q1q0q0

q3

A Simple NFA

start 1

1

 0, 1
0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

q3

A Simple NFA

q1 q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

q3

A Simple NFA

q2
start 1

1

q2

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1

1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1

1

 0, 1

q3

0 0, 1

 0, 1

0 1 0 1 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

q3

A Simple NFA

start 1

1

 0, 1

q3

0

 0, 1

 0, 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2
start 1

1

q2

 0, 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2
start 1

1

q2

 0, 1

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path does not

accept.

q0q0 q1 q2q2

A More Complex NFA

q1 q2
start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2
start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2
start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2
start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2
start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2
start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q2q2

A More Complex NFA

q2
start 1

1

q2

 0, 1

Oh no! There's no
transition defined!

0 1 0 1 1

q1q1q0q0 q2q2

A More Complex NFA

q2
start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2
start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2
start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2
start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2
start 1

1

q2

 0, 1

0 1 0 1 1

q0q0 q1 q2q2

A More Complex NFA

q1 q2
start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2
start 1

1

q2

 0, 1

0 1 0 1 1

q1q0q0 q1 q2q2

A More Complex NFA

q2
start 1

1

q2

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1

1

 0, 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1

1

 0, 1

0 1 0 1 1

0 1 0 1 1

q2q2q1q1q0q0 q2q2

A More Complex NFA

start 1

1

 0, 1

Hello, NFA!

q2q2q2q2q1q1q0q0
start h i

h i

q0 q2q2q2q2

Hello, NFA!

q1q1q0
start h i

h i

q1q0q0 q2q2q2q2

Hello, NFA!

q1
start h i

h i

q1q0q0 q2q2q2q2

Hello, NFA!

q1
start h i

h i

q2q2q1q1q0q0 q2q2

Hello, NFA!

start h i

h i

q2q2q1q1q0q0 q2q2

Hello, NFA!

start h i

h i

q2q2q2q2

Tragedy in Paradise

q1q1q0q0
start h i

h i p

q0 q2q2q2q2

Tragedy in Paradise

q1q1q0
start h i

h i p

q1q0q0 q2q2q2q2

Tragedy in Paradise

q1
start h i

h i p

q1q0q0 q2q2q2q2

Tragedy in Paradise

q1
start h i

h i p

q2q2q1q1q0q0 q2q2

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0 q2q2

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0 q2

Tragedy in Paradise

start h i

h i p

q2q2q1q1q0q0

Tragedy in Paradise

start h i

h i p

(I)

q2q2q1q1q0q0
start a b

The language of an NFA is

ℒ(N) = { w ∈ Σ* | N accepts w }.

What is the language of each NFA? (Assume Σ = {a, b}.)
Answer at https://cs103.stanford.edu/pollev

(II)

q1q1q0q0 q2q2q2
start a a q2

 a, b

(III)

q0
start

(IV)

q0q0
start

(V)

q0q0
start

 Σ

{ab}

{ w ∈ Σ* | w ends in aa }

Ø {ε} Σ*

Question to ponder:
Why is the answer

{ w ∈ Σ* | w ends in aaa }
not correct?

https://cs103.stanford.edu/pollev

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q0 q1

q4 q5

q2

q0q3

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start q1

q4 q5

q2

q3

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start q1

q4 q5

q2
a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q4q0q3q3

q0q0 q1

q4 q5

q2

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start q1

q5

q2
a

ε

a

b

b, ε b

a

ε

b a a b b

q4

q1

q4q0q3q3

q0q0 q1

q5

q2

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start

q5

q2
a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q1 q2

q4

q1

q4q0q3q3

q0q0

q5

q2

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0 q2q1 q2

q4

q1

q4q0q3q3

q0

q5

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q3

q0q0 q2q1 q2

q4

q1

q4q3 q5

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q4q0q3q3

q0q0 q2q1 q2

q4

q1

q5

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start

q5

a

ε

a

b

b, ε b

a

ε

b a a b b

q4 q5q4q0q3q3

q0q0 q2q1 q2q1

q5

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q0q3 q5q4 q5q4q3

q0q0 q2q1 q2q1

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

q4 b a a b b

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

b a a b b

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

b a a b b

q4q3q3 q5q4 q5

q0q0 q2q1 q2q1

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.

start a

ε

a

b

b, ε b

a

ε

Not at all fun or
rewarding exercise: what is
the language of this NFA?

(I actually don’t know the
answer. I made up this NFA

just to show off -ε
transitions.)

ε-Transitions
● NFAs have a special type of transition called

the ε-transition.
● An NFA may follow any number of ε-transitions

at any time without consuming any input.
● NFAs are not required to follow ε-transitions.

It's simply another option at the machine's
disposal.

NFAs
● An NFA is defined relative to some

alphabet Σ.
● For each state in the NFA, there may be

any number of transitions defined for
each symbol in Σ, plus any number of
ε-transitions.
● This is the “nondeterministic” part of NFA.

● There is a unique start state.
● There are zero or more accepting states.

DFAs
● A DFA is defined relative to some

alphabet Σ.
● For each state in the DFA, there must be

exactly one transition defined for each
symbol in Σ. Additionally, ε-transitions
are not allowed.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

Thinking about Nondeterminism

Intuition 1: Perfect Positive Guessing

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start
q₀ q₁ q₂a b

Σ

q₃a q₃

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₀ q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₁ q₂a b

Σ

b a b

q₃a

a

q₃

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₂a b

Σ

b

q₃a

a

q₃

q₀ q₁

a b

q₀ q₁ q₂ q₃

Perfect Positive Guessing

start

a

q₂a b

Σ

b

q₃a

a

q₃

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

start

a

a b

Σ

b

q₃a

a

q₃

q₁ q₂q₀ q₁

a b

q₀ q₂ q₃

Perfect Positive Guessing

start

a

a b

Σ

b

q₃a

a

q₃

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

start

a

a b

Σ

b

a

a

q₃

q₃q₃q₂q₁ q₂q₀ q₁

a b

q₀

Perfect Positive Guessing

start

a

a b

Σ

b

a

a

q₃

Perfect Positive Guessing
● We can view nondeterministic machines as having

Magic Superpowers that enable them to guess
choices that lead to an accepting state.
● If there is at least one choice that leads to an accepting

state, the machine will guess it.
● If there are no choices, the machine guesses any one of the

wrong guesses.
● There is no known way to physically model this

intuition of nondeterminism – this is quite a
departure from reality!

● (And no, this is not the same as a quantum computer.
Come talk to me after class to learn why!)

Intuition 2: Massive Parallelism

q₃q₃q₂q₁ q₂q₀ q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃

q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a

a

q₃q₃

We're in at least one
accepting state, so there's
some path that gets us to

an accepting state.

q₀ q₃q₂q₁

Massive Parallelism

start

a

a b

Σ

b a b

a q₃q₀

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₃q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃

q₂q₁q₀

Massive Parallelism

start

a

a b

Σ

b a b

a q₃q₃

We’re not in any accepting
state, so no possible path

accepts.

Massive Parallelism
● Key Idea: Imagine the NFA can be in many states

at once. The NFA tries all possible transitions in
parallel with one another.

● Here's a rigorous explanation about how this
works; read this on your own time.
● Start off with the start state active, plus all states that

can be reached by zero or more ε-transitions.
● When you read a symbol a in a set of states S:

– Form the set S’ of states that can be reached by following a
single a transition from some state in S.

– Your new set of states is the set of states in S’, plus the states
reachable from S’ by following zero or more ε-transitions.

Designing NFAs

Designing NFAs
● Embrace the nondeterminism!
● Good model: Guess-and-check:

● Is there some information that you'd really like to
have? Have the machine nondeterministically guess
that information.

● Then, have the machine deterministically check that
the choice was correct.

● The guess phase corresponds to trying lots of
different options.

● The check phase corresponds to filtering out
bad guesses or wrong options.

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

0

 1

1

 1

0

0 1

0

1

 0

1

start

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ

Nondeterministically guess when the
end of the string is coming up.

Deterministically check whether you
were correct.

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check
L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1
0 1

start Σ
1 0 1 0 1 0

Guess-and-Check
L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

Guess-and-Check
L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a

b

c

a

b

a, b

c
 a

c

b

c

c

a
b

a, c

b, c

b

a

 Σstart

Guess-and-Check
L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, b

a, c

b, c

start

ε

ε

ε

Nondeterministically
guess which character

is missing.

Deterministically check
whether that

character is indeed
missing.

Guess-and-Check
L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check
L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check
L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check
L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check
L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check
L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check
L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Guess-and-Check
L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }

a, c

b, c

start

ε

ε

ε

a, b

a c c a c c

Just how powerful are NFAs?

Next Time
● The Subset Construction

● So beautiful. So elegant. So cool!
● More Closure Properties

● Transforming languages by transforming
machines.

● The Kleene Closure
● What’s the deal with the notation Σ*?

